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Theoretical motivation N

In novel environments, humans are often faced with the problem of learning to categorize high-

dlmen5|onal stimuli with minimal prior knowledge of the relevant decision criteria. Here, we asked humans,

to categorize naturalistic stimuli (trees) according to one of two uninstructed criteria, that depended on thelr\\
“leafiness” and “branchiness” (see figures below). Our research questions concerned (1) the nature of the '
training regime that promotes learning about naturalistic stimuli, and (2) the neural mechanisms that

underlie dlfferences between effectlve and meffectlve Iearmng currlcula
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Figure 3: Behavior in first half of experiment. Left: accuracy (y) by
condition (x) for hardest 33% of trials. Right: psychometric curves.
Looking only at difficult test trials, accuracy was highest in the
interpolation group (75 + 1.0%), and lowest in the extrapolation
group (51 £ 1.1%). The psychometrics are well-behaved &

* |nterleaved training and test trials. Test trials were
uniform and without feedback.

* 2 conditions (between-subjects, see figure above):

" * Interpolation: train only on easy "

 Extrapolation: train only on hard
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We conclude with a summary of observed discrepancies between

COnCI usions the CPP and psychometrics, which challenge its interpretation as a
Clear behavioral result - interpolation learners perform better on measure of accumulated evidence :
the most difficult trials, despite never encountering them during e psychometrics are steepest at the boundary, while CPP tuning is
training. Neural results: distance to the category boundary predicts steepest at the extremes.
CPP amplitudes, but tuning is similar between relevant and  psychometrics are much steeper for the relevant than for the
irrelevant dimensions, and does not in/decrease with learning. We irrelevant dimension, but their contribution to CPP is similar.
do find a different correspondence between learning and CPP, as  psychometrics get steeper over time, while CPP tuning remains

CPP amplitudes increase over time, for correct trials only. constant.




